CSCI 531 - Applied Cryptography Project
Chirayu Agarwal (caagarwa@usc.edu), Rishit Saiya (rsaiva@usc.edu)

1. Introduction

Technology has changed the character and speed of our life in the modern digital era. It has also
been used as an asset for a long time and has long played a vital role in business, which has
increased the dependency of organizations on it. Technology has an impact on every industry,
and the healthcare industry is no exception [1]. As part of this shift, electronic health records
have largely taken the role of traditional medical records. Rising cyberthreats are a result of
technological innovation. The nature of medical records is delicate. The integrity, privacy, and
confidentiality of PHI (Public Health Information) are also protected by a number of laws [2].

One of the important pieces of law is the HIPAA (Health Insurance Portability and
Accountability Act), which applies to healthcare providers, medical professionals, business
partners, etc. In order to combat cyber risks, audit management has evolved into one of the most
crucial components of an all-encompassing cyber security architecture. Knowing who has
accessed the system and what actions have been taken on these records are thus of the utmost
significance.

In reality, when any subject tries to enter the system, it is essential to capture the logs. To begin
with, the log files may be quite helpful in determining culpability. Furthermore, having sufficient
logs would be quite beneficial for incident management. We may learn about the actions taken
by various entities using log information, and this knowledge will be crucial in reconstructing the
states of health information data [3]. Additionally, it might be utilized as legal proof in cases of
medical negligence.

2. Goals and Objectives

The goals and objectives encapsulating this audit system are:

Privacy and Confidentiality of Data: Health information audit records have been kept private and
confidential. By using a variety of cryptographic primitives, information has been protected such
that unauthorized parties cannot access sensitive data in an unlawful way.

Queries: The records of health information are accessible to and searchable by authorized
entities.

Immutability: Existing audit records cannot be changed by any organizations without being
noticed. That will be automatically detected and reported if someone does it.

Decentralization: In this safe audit system for electronic health records, many entities can
provide immutability.

This system is restricted to five patients and two audit businesses, as stated in the project
document.

mailto:caagarwa@usc.edu
http://rsaiya@usc.edu

Patients are: patientl, patient2, patient3, patient4 and patient5.
Two audit companies are: auditl and audit?2.

It is assumed that audit data is sent to this system in an unencrypted (clear) format. The audit
record includes the date and time of the logged event, the unique-id (security identification) of
the user who entered the system, the patient ID whose health information records were viewed,
and the type of action taken on the data, such as creation, copying, displaying, etc.

2. System Architecture

The technology initially enables patients to create accounts as well as audit businesses in the
event that accounts and documents are missing. The system has maintained the separation
between patients and audit firms. For each of the five patients, we have credentials—individual
IDs and passwords. These credentials serve as the foundation for authentication. Along the same
lines, there are special IDs and passwords for two audit organizations that also help to distinguish
the auditors from one another. Two dictionaries are defined in order to hold credentials. Both are
used for audits and patients, respectively. For identifying reasons, password-based authentication
is used.

The system starts by taking input. These inputs are verified by the authentication tool. If the
credentials match, only the authentication tool allows people access to the system. If credentials
don't match, users won't be able to access the system. Authentication function is implemented in
a way that necessitates successful authentication before beginning any system action.

After verification, we have a server where the auditing companies may submit their audit records
of electronic health information. Audit enterprises have the responsibility of receiving the
records, including the audit records, and then tracking and keeping an eye on these audit health
data. The audit record is fed to the server, as stated in the project sheet. This input takes the form
of a file, and it contains unencrypted data. Since the information is in plaintext, malevolent actors
can access it without authorization. As a result, it is susceptible to manipulation, alteration, or
modification for the benefit of an unauthorized person.

The system only allows patients to upload their health information records through audit
companies in order to solve a few of these issues. The file's audit data is encrypted using the
symmetric key method AES (Advanced Encryption Standard). The RSA public-key encryption
technique is then used to produce public and private keys for all patient records in order to
facilitate key management and interchange [8]. A set of the public and the private key is
produced for each of the five patients. They aid in keeping data safe both during storage and
during transit.

After that, Merkle Tree is used, a crucial component of the blockchain, to implement a couple of
the key features of this system [5]. The technology enables the Merkle Tree to be generated by
audit firms. The Merkle tree considerably decreases the amount of memory and computation
needed for verification while providing efficient assurance of the accuracy and validity of audit
health information [6].

In actuality, the transmission of a little quantity of data between the records is sufficient for the
confirmation of verification. Additionally, it helps distinguish between legitimate and fake health
data. Audit enterprises alone are responsible for the necessary Merkle tree actions. Audit
enterprises must authenticate themselves before doing any Merkle tree-related actions.

Health information records may be searched for using the Merkle tree, and if any are found, they
are presented using the evidence of inclusion method. Any one of the five patients can check to
see if the EHR system contains their health audit record. The patient asks the server for their
health records to start this procedure off. The patient verifies whether or not his or her record is
stored on the server.

The server verifies whether or not the record is present. If it is, the server provides the patient
with the record. The patient additionally confirms the inclusion proof in order to have confidence
in the records. By calculating the requisite hashes, the inclusion proof is established. The
authenticity of the record is then checked to ensure that no malicious actor has altered the current
record.

Due to the dynamic nature of the operation, we may anticipate that the records will be updated
when the auditing companies and patients make adjustments. As activities increase, these health
audit reports will change over time. Due to this, it is extremely important to ensure that records
are reliable and uncontaminated.

Merkle tree's attribute is used in this case to help the system determine the consistency of the
health audit reports. We may compare a group of old files with the most recent versions in order
to ensure that health information records are consistent. We can also check to see if any new
material or health records have been included. The system makes sure that records are
unchangeable and consistent at every level by continuously recording and monitoring changes.

3. Goals Achieved

Identification and Authorization: The system is set up such that users without the necessary
credentials are unable to access it. For patient health audit records and audit companies,
credentials based authentication has been established (unique user-ids and passwords).

Privacy: To maintain the privacy and secrecy of the health audit records, cryptographic
techniques have been deployed. AES (Advanced Encryption Standard) symmetric algorithm.
(RSA) algorithm's public key distribution and management has been deployed in order to
improve these processes.

Queries: Authenticated and permitted entities may query the records because of how the system
is set up. You can retrieve the health audit records if your credentials are valid and you have the
necessary authorization. The validation proof is used to operate and safeguard the entire process.
Additionally, records that are encrypted must first be decrypted in order for authorized users to
access them. The system features a feature that decrypts the encrypted file kept on the server
using AES.

Decentralization: In this system, control is not confined to a single organization. The necessary
operations can be carried out by a number of organizations. The processes that check the veracity
of the data and provide verification proof make sure the system is in good working order and that
audit logs for health information are accessible. These systems control and manage this
capability.

Immutability: This system forbids making unauthorized changes to the records. The application
of the Merkle Tree enforces it. Changes, modifications, and deletions are recognized and
recorded at every level thanks to consistency and validity proofs. Additionally, we save the
evidence for change tracking and monitoring.

4. Cryptographic Components

This system makes use of a number of cryptographic components to achieve the project's
objectives.

Those components are as follows:

1. AES algorithm (CBC mode)

2. RSA (Public key cryptography)
3. SHA-256 (Hashing)

4. Merkle Tree

Symmetric key encryption is a crucial and essential component. AES (Advanced Encryption
Standard) is one of the most often utilized algorithms in many different systems. However, there
are still further choices, like 3DES, IDEA, and blowfish. However, AES performs remarkably
well when measured in terms of enhanced security and resilience to various assaults.

As a result, health audit records are encrypted using AES. It encrypts data in blocks of 128 bits
apiece and is essentially a block cipher. It uses a substitution-permutation network to perform a
series of various operations, including data shuffles and replacements. There are several ways to
put AES into practice. These modes include counter mode, cipher feedback mode, cipher block
chain mode, output feedback mode, and cipher block chain mode. CBC mode is the one being
used for the audit system [11].

After executing XOR with the initial block of plaintext in CBC mode, the algorithm is then
given the previous cipher block as input. Although decryption can occur simultaneously with
encryption in CBC mode, encryption proceeds progressively. CBC mode was chosen since it is
quite effective and has a stronger resistance to cryptanalysis.

The public key encryption technique is a further cryptographic scheme that has been
incorporated into the system. Here, the RSA Algorithm is used. A set of public and private keys
have been created for each of the patient records using RSA methods. This algorithm has been
employed for key management and distribution [9].

AES key encryption and decryption are carried out using public and private keys, respectively.
An extremely big number is challenging to factorize, which is essential to the RSA concept.
Multiplying two big prime numbers gives one of the two numbers used to make the public key.
The same two prime numbers are also used to construct the private key.

RabinMiller routines have been utilized, which can assess if a given number is likely to be a
prime number or not, for the implementation of RSA key creation. Additionally, functions to
create prime numbers, the modular universe, the largest common factor, and other functions that
are related to creating both public and private keys have been used,

The SHA algorithm is another cryptographic element that has been used. The major purpose of
this is to preserve integrity. The primary application of this approach is for Merkle tree
implementation. SHA 256 is fundamentally a member of the Secure Hash Algorithm (SHA) 2
family of algorithms.

The number 256 has a distinct meaning given that it reflects the final hash digest result, which is
always 256 bits regardless of how large the plaintext or cleartext is (a hashing property). It
utilizes the initializing the buffer, compressing the functions, padding bits, and padding length of
the SHA 256 algorithm.

The Merkle Tree is the foundation of this system, to move forward. Hash tree and the Merkle
tree are similar terms. It is a type of data structure that can be applied to synchronization and data
verification. It uses hash functions to maintain data inclusion, integrity, and verification. The
Merkle tree's essential component is the hash function.

Large amounts of data can be efficiently and effectively mapped because of the tree's structure,
and any changes - no matter how minor - may be quickly found and reported. With the aid of the
Merkle tree, we can identify the location of a data change, check to see if the data is consistent
with the root hash, and optimize the entire process as we won't have to go over the entire data
structure.

We can learn the necessary details about the structure by looking at only a small portion of it.
The entire data/content is fingerprinted using the root hash. The distribution system, which is
necessary for this project, handles it fairly effectively. It verifies the consistencies remarkably
well.

Each leaf node in the Merkle Tree represents a distinct data element. All patient records are the
individual data elements for this system. The initial data pieces (health audit records) are first
hashed using the merkle tree hash algorithm (SHA-256) to produce the leaf nodes of the tree,
which is how a merkle tree is built.

The parent nodes of the leaf nodes are then created by hashing together the resulting hashed data
in pairs. This procedure keeps going until it produces the Merkle root, which is a single hash. In
order to offer immutability as well, Merkle tree is being used. The only thing we need to do to
verify any changes in the records is to check the hash pointer of the genesis/root block. If the
patient audit record is changed, then the hash pointer in its parent node and, subsequently, the

root node's hash pointer must also be modified [14]. This requires a lot of computation. When
confirming the existence of content (health audit data), the Merkle tree is extremely important. It
accomplishes that in a very effective and efficient way.

All of the data in the tree need not be revealed or calculated. We can determine whether or not a
specific health audit record is there by computing the few necessary nodes from the desired leaf
to the merkle root. As the decentralization that this system is designed to support. There is a
good likelihood that several adjustments will take place simultaneously. In light of this,
maintaining consistency becomes essential means that everything from the previous edition of
the health audit records was included in the current version [15]. Additionally, the hierarchy
should be preserved, with new records coming after older ones. Merkle Trees help to effortlessly
fulfill all of these needs.

5. Prototype Implementation:
Some of the modules/libraries used to develop this system are as follows:

.Crypto.Cipher

.AES: For Symmetric key Cryptography Crypto
. Random

. sys

oS

.math:Hashlib

. sha256: For Hashing (Integral part of Merkle Tree)

One file for every patient is created. In total 5 files (patient<i>.txt). This file includes
patient ID, date of access and ID of user which is unique for every user accessed the system and
the action that was taken on that.

Example: For patient1:d:04/20/2021;pid:486541;uid:987651;a:create;

Similarly, five files have been utilized. To implement various functionalities, a variety of
functions have been used. The functionalities that have been implemented support encryption
and decryption. Public and private keys are generated using the RSA algorithm using encryption
files, decryption files, the padding function for AES (because it is a block cipher),
rabinmiller, generateprime, gcd and modular inverse functions. The
consistency function, authenticity function, and verify inclusion function
were added to the class merkletree that was created to satisfy the various reasons outlined
earlier in this report.

Some of the functions are shown as follows:

encrypt(message, K):

message = pad(message)

iv = Random.new().read(AES.block size)
cipher = AES.new(K, AES.MODE_CBC, 1v)
return 1v + cipher.encrypt(message)

decrypt(ciphertext, K):

iv = ciphertext[:AES.block size]

cipher = AES.new(K, AES.MODE_CBC, 1v)

plaintext = cipher.decrypt(ciphertext|[AES.block size:])
return plaintext.rstrip(b™\e")

These are the functions of encryption and decryption of plaintext using key K. The keys are
generated by the function generateKey. A snippet of code is as follows:

generateKey(keysize):

p = generatePrime(keySize)

q = generatePrime(keySize)

n=p*q

while
e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
if ged{e, (p - 1) * (q - 1)) == 1:

break

d = findModInverse(e, (p-1) * (g-1))

publickey = (n, e)

privateKey = (n, d)

return (publicKey, privateKey)

As we can see here, publickKey and publicKey are generated using n, e, d parameters
of RSA.

The generatePrime function is as mentioned below:

generatePrime(keySize):
while
num = random.randrange(2**(keySize-1), 2**(keySize))

if isPrime(num):
return num

Adding to the RabinMiller test [7] is done as follows:

' rabinMiller(num) :
if(num % 2 == © or num < 2):
return
if num == 3:
return
num - 1
B
while (s % 2 == 0):
s =5 ff 2
t+=1
for trials in range(5):
a = random.randrange(2, num - 1)
v = pow(a, s, num)
if v I=1:
1=20
while v != (num - 1):

if(i == t-1):
urn Fa

=i+ 1
v*%¥2) ¥ num
(

return

7 x
T T e PP e ST et)

p1 r your option

Starting with the first choice, which serves to create patient records and audit the company's
account if none exist, we proceed.

d and "audit” for audit company:

We must type patient when creating patient accounts. Similar to that, we must type audit if we
wish to run an enterprise audit. The patient's name must then be entered. patientl is given as
input here. The system now requests a password, which must be entered. The password is
entered as 123. We therefore obtain a first set of patient credentials that are kept in a dictionary.
In the same way, five patient accounts with IDs and passwords are created. The message
"PATIENT RECORD EXISTS" will be displayed if the account already exists and someone
tries to create a new account with the patient name that already exists.

RD EXIS
o A R R R R R R

The system similarly enables the creation of records for audit companies. We must first select
Option 1 before typing Audit. The system allows you to enter the name of the audit enterprise
after typing audit. Following name entry (auditl in this case), the system prompts for a
password. It generates the account for the audit business after receiving the password. For the
second audit enterprise, the account was created in a similar manner. These audit enterprise
accounts are kept in a unique dictionary designed specifically for audit firms. We currently have
five patients and two audit firms with accounts.

Moving on, the second choice involves keeping electronic health records on a server. The system
has been designed such that only authenticated audit companies are permitted to keep patient
records on the server.

ter your option

The system first prompts the user to select the audit company that will create and upload a
patient record. The audit company's name is the first question the system asks. It requests a
password after accepting the audit company's account name. Once the verification has been
completed successfully, the audit company is free to create and upload the records to the server.
The system then asks which patient these operations should be performed on. patient1 in this
case. After taking input and doing verification, it takes input in the form of a file before
successfully uploading the patient's record to the server. The system converts the audit records'
plain text files to encrypted files in the background while also generating keys. This helps to
protect records' confidentiality while they are in transit and storage. (The file contains patient-id,
unique-id of the user and date at which the user accessed health records).

Similarly, these operations have been carried out for all the patients i.e. patientl,
patient?2, patient3, patient4, patient5. Audit companies auditl and
audit2 are the authorized audit companies that carried out the record generation and upload
operation.

123

A ——————————————

Jaudit2 IS AUTHENTICATED AND CAN NOW UPLOAD THE RECORDS.

e ———————————————————
nter the patient record name to be uploaded

patie:

R ——————————————

patient2 RECORD NAME IS SUCCESSFULLY UPLOADED TO audit2 AUDIT.
B S S

Next, we go on to the third option, which is to assign records to audit companies from the server.
The mechanism here enables the approved audit firms to make Merkel records for the patients.
The system then requests that the audit company be given access to patient records. After
incorporating all the inputs, a Merkle record containing left, right, and Merkle root is created.

r the password
123
o

-

ient record name to the audit

Moving on to the Fourth and Fifth choices, which are the Patient Records Query and Display
choices, which show an audit and authenticity check of the records. Patients can request system
audit data by using the system's querying functionality. Authentication comes first.
Authentication is required before any patient can query the data. Queries are only permitted
following successful authentication. Following that, the audit record's existence is verified. The
system's database is checked. Upon discovery, a notice is displayed stating that the system was
examined, and the record was obtained.

Following the presentation of further hash values for relevant nodes, plain text versions of the
records' data are then shown.Since the data is being stored encrypted, a decryption process is
being done in the background. The information in the record includes the date, the patient's ID,
and the user's security ID. The system enables patients to confirm the validity of records. To
know if a record is immutable is helpful. The patient can trust the records after doing the
necessary verification.

b7d141b8d7: ee5927481ec341bs! 372 00 32eb51c891bbc2ee:

Please enter your option

24dde0albc32eb51c891bbe2eedat

T L Ty

il Create patient and audit company accounts
2 ore EHR in the serw

g gn audit company with records in the server
for patient record and display audit
uthentici
the record:

oK KRR AR KR KRR AR AR K KRR KRR KKK A

cord name

[True. THE PATIENT RECORD IS AUTHENTIC.
xR R R A FH A KA KA AF AR F AR AR KRR KK HHK

[True. THE PATIENT RECORD IS AUTHENTIC.
e ——

Likewise all the patient records have been verified.

Moving on to the final and most crucial step which is to examine the consistency of records.
Record consistency in a distributed and decentralized context is a difficult undertaking. As
patients and auditing organizations make modifications, audit records are updated. It is crucial to
verify whether or not the records are consistent.

We compare the old and new versions of files to see if the previous version is still present in the
new version, if the order is the same, and if new information has been added after the old. The
system keeps track of all the modifications during the process and offers immutability evidence
for all system data.

Please enter your option

123

o

Jauditl IS AUTHENTICATED AND CAN CREATE THE MERKLE RECORDS.

stk 55k AR AR K SRR KR8 A8 KR A AR AR AR A
se assign patient record names to the audit company

[patient1,patient2]
[patientl,patient2,patien

', 'f02018132f462123c856ab2584bc4aeeaf19cf614781! 0b26462695a972", ' ca5d2f76b9de5913bled2c80293c8alffe97851499b04fffc64432102af]

The last option is to exit the program.

6. Assumption and System Limitation:

File path needs to be defined in the code for its execution and every step is dependent on the
previous step. Only after making all 5 patient records and 2 audit enterprises, other options (2-6)
will work. The system has been implemented on a single machine.

The implementation of message exchange involves reading from or writing to a file. Five files in
all are created. For every patient, one. This file contains the user's unique ID, the patient ID, and
the date on which the record was accessed. Password-based authentication is implemented to
authenticate patients and audit enterprises [13]. However, the system should have two-factor
authentication to have robust security. For this project, only one factor of authentication which is
a password is implemented. For a better implementation, a second factor (like OTP, fingerprint,
etc) could be employed.

Socket programming is not utilized for network operations. In true sense, there should be
comprehensive socket programming to connect between client and server and exchange data
between them. Ideally, TLS 1.2 or TLS 1.3 should be implemented for the system where data is
secure in transit. Proper authentication, confidentiality and integrity can be comprehensively
ensured by TLS 1.2 or TLS 1.3. In this system, there is no mechanism for a digital signature
certificate, thereby, the client has not adequate provisions to verify the server with high
assurance.

During transit, content integrity is something that needs to be enforced in true sense. With TLS,
it could have been done effectively. This system uses CBC mode for performing encryption and
decryption which is reasonably good and does pretty well in achieving the objectives. However,
counter mode based encryption could do even better in attaining the desired objectives with a
higher degree of assurance, efficiency, performance and security.

Ideally, TLS 1.2 or TLS 1.3 should be implemented for the system where data is secure in transit.
Proper authentication, confidentiality and integrity can be comprehensively ensured by TLS 1.2
or TLS 1.3. In this system, there is no mechanism for a digital signature certificate, thereby, the
client has not adequate provisions to verify the server with high assurance. The strict
enforcement of content integrity during transit is necessary.

With TLS, it could have been done effectively. This system uses CBC mode for performing
encryption and decryption which is reasonably good and does pretty well in achieving the
objectives. However, counter mode based encryption could do even better in attaining the desired
objectives with a higher degree of assurance, efficiency, performance and security.

7. Conclusion

In conclusion, there are benefits and drawbacks to the decentralized audit system. On the plus
side, it offers better accuracy and efficiency along with more accountability and openness [10].
Decentralization aids in the distribution of authority and power, which lowers the possibility of
corruption and manipulation. The adoption of blockchain technology also guarantees data
immutability and integrity [4]. However, the decentralized audit approach has significant
disadvantages as well. The possible lack of uniformity and consistency among many platforms
and systems is a significant problem. The potential for security lapses and hacker attempts,
which could jeopardize private financial information, is another worry. Decentralized system
utilization can also be challenging and complicated, necessitating particular training and
experience [12].

Overall, the decentralized audit system holds the promise of revolutionizing the auditing process
and elevating public confidence in financial institutions. However, it also necessitates giving
considerable thought to and managing any potential dangers and difficulties. The advantages and
disadvantages of each new technology or system must be carefully considered before being put
into use.

8. References

[1] Charalampos Stamatellis, Pavlos Papadopoulos, Nikolaos Pitropakis, Sokratis Katsikas,
William J Buchanan, A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric,
arXiv - CS - Cryptography and Security, 2020

[2] D Tith, JS Lee, H Suzuki, W Wijesundara, N Taira, T Obi, N Ohyama, Application of
Blockchain to Maintaining Patient Records in Electronic Health Record for Enhanced Privacy,
Scalability, and Availability, Healthcare Informatics Research 26 (1), 3-12, 2020.

[3] Diver, Sorcha. “Information security policy-a development guide for large and small
companies.” Sans Institute (2007): 1-37.

[4] M. M. Madine et al., Blockchain for Giving Patients Control Over Their Medical Records, in
IEEE Access, vol. 8, 2020

[5] Li, Hongwei, et al. "An efficient merkle-tree-based authentication scheme for smart grid."
IEEE Systems Journal 8.2 (2013): 655-663.

[6] Xu, Jian, et al. "Dynamic fully homomorphic encryption-based merkle tree for lightweight
streaming authenticated data structures." Journal of Network and Computer Applications 107
(2018): 113-124.

[7] Arnault, Frangois. "Rabin-Miller primality test: composite numbers which pass it."
mathematics of computation 64.209 (1995): 355-361.

[8] Dongjiang, Li, Wang Yandan, and Chen Hong. "The research on key generation in RSA
public-key cryptosystem." 2012 Fourth international conference on computational and
information sciences. IEEE, 2012.

[9] Nagar, Sami A., and Saad Alshamma. "High speed implementation of RSA algorithm with
modified keys exchange." 2012 6th International Conference on Sciences of Electronics,
Technologies of Information and Telecommunications (SETIT). IEEE, 2012.

[10] Menachemi, Nir, and Taleah H. Collum. "Benefits and drawbacks of electronic health record
systems." Risk management and healthcare policy (2011): 47-55.

[11] Belchior, Rafael, Miguel Correia, and André Vasconcelos. "Towards secure, decentralized,
and automatic audits with blockchain." (2020).

[12] Du, Yuefeng, et al. "Enabling secure and efficient decentralized storage auditing with
blockchain." IEEE Transactions on Dependable and Secure Computing 19.5 (2021): 3038-3054.
[13] Tian, Guohua, et al. "Blockchain-based secure deduplication and shared auditing in
decentralized storage." IEEE Transactions on Dependable and Secure Computing 19.6 (2021):
3941-3954.

[14] Chen, Yu, et al. "PGC: decentralized confidential payment system with auditability."
Computer Security—-ESORICS 2020: 25th European Symposium on Research in Computer
Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceedings, Part I 25.
Springer International Publishing, 2020.

[15] Fan, Kuan, et al. "Dredas: Decentralized, reliable and efficient remote outsourced data
auditing scheme with blockchain smart contract for industrial IoT." Future Generation Computer
Systems 110 (2020): 665-674.

