
Fake Packet Generation and
Detection in Computer Networks

Abhishek Raj
Computer Science and Engineering

Indian Institute of Technology, Dharwad

Rishit Saiya
Computer Science and Engineering

Indian Institute of Technology, Dharwad

Abstract—This paper touches upon fake packet generation
and their detection using Snort, simulation of a IDS (Intrusion
Detection System). This is a base for understanding the Man in
the Middle Attacks and their working using Scapy, Wireshark
& Snort and networking techniques.

I. INTRODUCTION

In recent times, most of the devices and appliances are
now connected together under a network where they can
communicate among each other using a set of rules and
networking compliance [1]. This totally opens up the surface
area of attack on such network instigated a fatal Man in the
Middle Attack[2].

This report aims to show some demonstration on how
network traffic (in form of packets) can be obfuscated using
fake packet generation. We further elaborate on detection of
such fake packets in network as a mitigation technique.

II. ANALYSIS OF COMPONENTS

A. Computer Network

A computer network [3] is a group of computers that use
a set of common communication protocols over digital inter-
connections for the purpose of sharing resources located on or
provided by the network nodes. The interconnections between
nodes are formed from a broad spectrum of telecommunication
network technologies, based on physically wired, optical, and
wireless radio-frequency methods that may be arranged in a
variety of network topologies.

B. Fake Packet

Fake packet are packets that appear as if they are part of
the normal communication stream.

1) Fake Packet Injection: Packet injection [4] (also known
as forging packets or spoofing packets) in computer network-
ing, is the process of interfering with an established network
connection by means of constructing packets to appear as if
they are part of the normal communication stream. The packet
injection process allows an unknown third party to disrupt or
intercept packets from the consenting parties that are commu-
nicating, which can lead to degradation or blockage of users’
ability to utilize certain network services or protocols. Packet
injection is commonly used in man-in-the-middle attacks and
denial-of-service attacks.

C. Man In the Middle Attack

Man in the Middle Attack [2] is being used by the NSA
over a decade to reverse engineer softwares to help analyze
malicious code[17] and malware and can give cybersecurity
professionals a better understanding of potential vulnerabilities
in their network and systems.

D. Scapy

Scapy [5] is a packet manipulation tool for computer
networks, originally written in Python. It can forge or decode
packets, send them on the wire, capture them, and match
requests and replies. It can also handle tasks like scanning,
tracerouting, probing, unit tests, attacks, and network discov-
ery. In this research, we have tried to use Scapy as a tool for
fake packet generation.

E. Snort

Snort [6] is an open-source, free and lightweight network
intrusion detection system (NIDS) software for Linux and
Windows to detect emerging threats. It sniffs packets and
spools them straight to the disk and can daemonize itself for
background packet logging. We used Snort in this research to
detect and analyze the incoming stream of fake packets from
another system under same network.

F. Wireshark

Wireshark [7] is a free and open-source packet analyzer. It
is used for network troubleshooting, analysis, software and
communications protocol development. We used Wireshark
in our research to understand analyze pcap files and obtain
corresponding graphs and curves.

G. Nmap

Nmap [8] is a free and open-source network scanner. Nmap
is used to discover hosts and services on a computer network
by sending packets and analyzing the responses. Nmap pro-
vides a number of features for probing computer networks,
including host discovery and service and operating system
detection.

1

H. State of the Art - From Raw Packet Capture to Advanced
Detection Mechanisms

[9] Network Traffic Analysis can be performed in many
different ways. Here is a list of the features that characterizes
network traffic. Each of these features is part of the OSI model
[10]:

• Source & Destination IPs: Provide the source and desti-
nation addresses of every packet.

• Protocol: The transport protocol. Typically TCP or UDP.
• Source & Destination Ports: Complete the source and

destination addresses.
• Size: The size of the packets.
• Flags: Whether the packet has some flag bits set. These

could be: urgent, SYN, ACK, FIN, etc.
• Payload: The data itself, that will be delivered to the

application running on destination address and port.

Each of these features can provide valuable information for
a NIDS. Today, many corporate switches can export raw
data, NetFlow, sFlow or similar data. Net- Flow data contains
Source and Destination IP and port, and the amount of traffic
transferred per flow.

On a higher level, it is also possible to analyze the payload
of every packet. However this requires a full understanding of
the protocols by the analyzer, as well as a full access to the
traffic, which is not easily scalable.

III. APPROACHES

A. Initial Approach

In order to get an overall idea about our research topic and
to get initial implementation start working, we did a simple
IDS implementation which is explained below.

1) Implementation: We setup a system with Ubuntu [12] as
base Operating System and a Virtual Machine called Kioptrix
[11], where the latter was set as a device connected to the
same LAN (Local Area Network) of the former. We thereby
integrated Nmap and Snort as IDS in the above mentioned OS
respectively. Our main goal was to test limitation of detection
for various IDS connected to internet of devices in the same
network as well as remote network.

We essentially tried sniff the other active system on the
network using the IDS integrated with the detecting system.
In Figure 1 and Figure 2, we see that the IDS are switched to
sniffing mode.

In the Figure 3 and Figure 4, we can see that each active
systems were detected as a traffic in their respective IDS.

Inference: With this small rather effective approach, we
learnt that the demonstration of fake packet and detection
through a remote system to a desired network is constrained
with existing conditions and modern state of the art security
measures on a local network only. So, in order to, further esca-
late our implementation, we built our final path for obfuscation
implementation.

Fig. 1. Nmap Scan (Kioptrix OS) before detection

Fig. 2. Snort Scan (Ubuntu OS) before detection

Fig. 3. Nmap Scan (Kioptrix OS) after detection

2

Fig. 4. Snort Scan (Ubuntu OS) after detection

B. Final Approach

With some concepts grasped from the Initial Approach and
many trials with our setup and selection of tools, we finally
decided upon the following Implementation.

1) Implementation: We started with deploying 2 unique
Operating Systems (Ubuntu) in Virtual Machine environment.
This was done in order to ensure that all the devices involved
in implementation are connected to same LAN.

C. Nomenclature & Environment Setup

We integrated Scapy in OS1 (here on referred as Attacker)
and Snort in OS2 (here on referred as Target) as our environ-
ment setting up step.

D. Fake Packet Generation (Phase-I)

As mentioned above, we have used Scapy to generate pack-
ets and customize the protocols to experiment with the scope
of generation as well as the IDS at the Target. WLOG, the
sequence of generation of packet was done at the Attacker’s
end. We initially began with some standard packet generation
from Attacker and sending to the Target. The following
command was used to generate simple packets stream:

send(IP(dst="<dst IP>")/TCP(),count=50)

E. Fake Packet Detection (Phase-I)

On the Target’s end we used Snort to detect incoming
stream of fake packets which were sent by Attacker. Figure 5
shows the Snort detection of stream of fake packets generated
from the attacker’s end. In order to be affirmative about the
authenticity of Snort results, we also sniffed the traffic using
Wireshark as well. Figure 6 shows the Wireshark sniffed
traffic of fake packets generated from the attacker’s end. The
following command was used to detect simple packet stream
on Target end:

sudo snort -A console -q -u snort -g snort
-c /etc/snort/snort.conf -i ens33

Fig. 5. Snort Sniffing Results - Initial Test

Fig. 6. Wireshark Sniffing Results - Initial Test

IV. ADVANCED IMPLEMENTATION

In this implementation, we took a step further and tried to
mimic the whole generation of fake packet and its detection
in attacker’s and target sides respectively.

Now, that we had established that fake packet can be
generated in a computer network and can be detected as
well, we thought of some advanced and novel technique to
detect/blacklist the fake packets in a network.

A. Configuration of Snort & Scapy for Detection

Snort: As Snort is an open source utility, we altered the
rules in configuration files named snort.conf, parallel to
our research and requirements.

The reputation preprocessor [13] was created to allow Snort
to use a file full of just IP addresses to identify bad hosts and
trusted hosts. Malicious IP addresses are stored in blacklists,
and trusted IP addresses are stored in whitelists. In the
standard installations of Snort, the configuration file is placed
at /etc/snort/snort.conf. In the snort.conf, we
started with configuring preprocessor reputation as
follows:

preprocessor reputation: \
memcap 500, \
priority whitelist, \
nested_ip inner, \
scan_local, \
whitelist $WHITE_LIST_PATH/white_list.rules, \

3

blacklist $BLACK_LIST_PATH/black_list.rules

Also, we had to configure WHITE LIST PATH &
BLACK LIST PATH as well. It was done as follows (Con-
sider /etc/snort/rules/iplists as X):

var WHITE_LIST_PATH X
var BLACK_LIST_PATH X

Now that we declared that our subnets will be stored in
white_list.rules & black_list.rules files, we
declared the absolute path for the files as follows:

sudo mkdir X
sudo touch X/black_list.rules
sudo touch X/white_list.rules

Scapy: Scapy did not require an external configuration for
our requirements, so we did not change anything there.

V. PCAP ENCAPSULATION IN SNORT & SCAPY

Our final goal was to compare and analyse various detection
techniques/algorithms which Scapy & Snort were using. So
further in this report, we would be comparing the capacity of
packets detection over time intervals for Snort vs Scapy.

Before we did that, we had to ensure that there was a proper
way to generate pcap files in Snort as well as Scapy, so that
we could later analyse the pcap files in Wireshark.

A. Snort PCAP Encapsulation

Snort stores all its log files at /var/log/snort with file-
name as snort.log.<timestamp> with pcap filetype.
So, we extracted the file using timestamp and further analyzed
it in Wireshark.

B. Scapy PCAP Encapsulation

After sniffing all the packets, we run the following com-
mands to save the output as pcap file to further analyze in
Wireshark:

a = _
wrpcap("test.pcap", a)

VI. COMPARISON IN DETECTION EFFICIENCY ACROSS
SCAPY & SNORT

A. Whitelist Traffic

This is a type of traffic which is not blacklisted by Target
system and Target’s end allows all types of traffic interceptions
to that particular subnet in the computer network.

1) Snort Detection: [14] We used the following
command for interception of traffic: (Consider
/etc/snort/snort.conf as X)

sudo snort -A console -q -c X -i ens33

Fig. 7. Scapy - Sending fake TCP packets

Fig. 8. Snort Sniffing Results - Whitelist Traffic

2) Scapy Detection: [15] We used the following command
for interception of traffic:

sniff(filter="tcp and host <src IP>",
prn=lambda x:x.summary())

Since, the Whitelist traffic is same as in the case of Fake
Packet Detection (Phase-I), hence the detection by Snort and
Scapy will be similar and rather trivial in Whitelist traffic.
However they are shown in Figure 8 and Figure 9.

The Whitelist Traffic which was incoming from Attacker’s
to Target’s end, was intercepted. It was then encapsulated
in pcap file by the process which is mentioned PCAP
Encapsulation in Snort & Scapy section.

Fig. 9. Scapy Sniffing Results - Whitelist Traffic

4

Fig. 10. PCAP Analysis - Snort IDS - Whitelist Traffic

Fig. 11. PCAP Analysis - Scapy IDS - Whitelist Traffic

Furthermore, Figure 10 & Figure 11 show the Graphical
Analysis of pcap files in Wireshark [16] of Number of
Packets received in intervals of time for Snort & Sniff IDS
for Whitelist traffic.

3) Comparison - Whitelist Traffic: Both Scapy and Snort
did great job detecting the traffic here, but since there are
several rules which were integrated in Snort, it is slightly
slower than Scapy in detection. But because of configuration
of those rules, Snort doesn’t show every packet which is being
sent or received. It shows the packets on priority level of
intrusion.

There is no such scope of liberty in Scapy. From Figure 7,
we can see that there are 351 packets being sent through Scapy
and from graph we can clearly see that Scapy (Figure 11) has
detected way more than number of packets sent. Those other
extra packets detected in Scapy are from other traffic under
the same network. On the contrary, Snort (Figure 10) only
shows 351 packets because of the configuration of rules done
in Snort.

B. Blacklist Traffic

This is a type of traffic which is blacklisted on a Target
system and Target’s end doesn’t allow all types of traffic
interceptions to that particular subnet in the computer network.
This is a mitigation technique to non-trusted sources which
are under the same network and can cause potential threat to
subnets, IoT Devices, other systems under network.

Fig. 12. Snort Sniffing Results - Blacklist Traffic

Fig. 13. Scapy Sniffing Results - Blacklist Traffic

1) Snort Detection: We used the following command for in-
terception of traffic. (Consider /etc/snort/snort.conf
as X)

sudo snort -A console -q -c X -i ens33

Since, the Blacklist traffic is different, the Snort Detection
also blacklists those packets and those are shown in Figure
12. It also notifies us of the potential threat of incoming traffic
packets on Snort IDS.

2) Scapy Detection:

sniff(filter="tcp and host <src IP>",
prn=lambda x:x.summary())

Furthermore, Figure 14 & Figure 15 show the Graphical
Analysis of pcap files in Wireshark [16] of Number of
Packets received in intervals of time for Snort & Sniff IDS
for Blacklist traffic.

3) Comparison - Blacklist Traffic: Unlike Whitelist Traffic
in here, because of the inclusion of the blacklist traffic rule
in Snort, it detects and blocks the incoming packets after
identifying the packets to be from blacklisted IP addresses.
It is because of that we see only 2 packets received (Figure
12) out of 20 packets sent (Figure 7).

On the other hand, Scapy does not have such scope of
freedom and hence it detects all the packets being sent from
Attacker’s end and also some extra traffic in the same network.
From graphs we can also observe that Snort (Figure 14)
has detected 2 packets and Scapy (Figure 15) has detected

5

Fig. 14. PCAP Analysis - Snort IDS - Blacklist Traffic

Fig. 15. PCAP Analysis - Scapy IDS - Blacklist Traffic

40 packets. It is because it’s count had been set to 40. So
after detecting 40 packets, it stopped. Out of which 38 shows
TCP error (the red region), because Snort detected them and
blocked those packets.

VII. RECONNAISSANCE ON BLACKLISTED IPS

Let us recapitulate on all what research and development
was proposed in above scenarios. We generated some fake
packets which do not belong to conventional internet traffic but
possesses standard protocols like TCP, UDP, etc. We later went
on to detect those newly added packets in systems connected
under same LAN.

Now, as a priority to keep your system safe (Mitigation
Technique), we used the technique of Blacklisting those sub-
nets which can pose a potential threat to all the system which
are connected under same LAN. Now, in this section, we
propose some basic Reconnaissance over the Blacklisted IPs
obtained above.

A. Network Reconnaissance on Blacklists

Proceeding over the same idea, we just glanced over some
techniques to get some holistic idea of blacklisted IPs. We
developed a simple python script which would give a graph
diagram to get more idea on how those Blacklisted IPs/subnets
are connected over to DNS servers.

!/usr/bin/env python3
from scapy.all import *

Fig. 16. Graph [Example 1] - Blacklist IP Traffic

hosts = ["<host 1>",
"<host 2>", ...]

res,unans = traceroute(hosts)
res.graph(target="> traceroute_graph.svg")

Example-2:
We tried the following example where we tried to include the
Attacker Blacklisted IP address in the hosts array. The script
for the same is as follows:

!/usr/bin/env python3
from scapy.all import *

hosts = ["<dst IP>"]

res,unans = traceroute(hosts)
res.graph(target="> traceroute_graph.svg")

Example-2:
We also tried following example of sub domains under IIT
Dharwad to get to know about incoming traffic and its sources
among various Internet Service providers and their DNS
servers.

!/usr/bin/env python3
from scapy.all import *

hosts = ["moodle.iitdh.ac.in",
"iitdh.ac.in", "smp.iitdh.ac.in",
"cdc.iitdh.ac.in", "gitea.iitdh.ac.in"]

res,unans = traceroute(hosts)
res.graph(target="> traceroute_graph.svg")

B. Graph and Inference

After running the script, we obtained the graph as shown
in Figure 16 and Figure 17 for Example 1 and Example 2
respectively.

In Example 1, we had taken the Attacker’s IP Address
(src IP) as the host and tried to get a basic reconnaissance

6

Fig. 17. Graph [Example 2] - Blacklist IP Traffic

on it. As we can see in Figure 16, that one of the ISPs is
Hathway Net and other is RJIO. We also got some of the
IP addresses 104.85.128.173 & 202.88.133.9/146
using traceroute commands in the scripts. A common
methodology of attacker would yield potential threat to the
Server’s IP addresses exposed in Graph. So, putting some good
security measures would help us to mitigate obfuscation of
malicious traffic and corresponding potential threats.

In Example 2, we had taken the some of sub domains
of our Institute domain of .iitdh.ac.in as the hosts
and tried to get a basic reconnaissance on it. As we can
see in Figure 17, that one of the ISPs is NKN (National
Knowledge Network) and other is BSNL. We also got some
of the IP addresses 14.139.150.68 & 61.0.239.228
using traceroute commands in the scripts. A common
methodology of attacker would yield potential threat to the
Server’s IP addresses exposed in Graph. So, putting some good
security measures would help us to mitigate obfuscation of
malicious traffic and corresponding potential threats.

VIII. CONCLUSION

The above research focuses upon one of most prevalent Man
in the Middle attacks of Fake Packet Generation and Detection
Computer Networks. It mentions variety and possibilities of
Fake Packet Generation using Scapy Library in Python3. Post
various configurations in open source IDS like Snort, we were

able to demonstrate the Detection of such non-conventional
traffic across various systems connected under same LAN.

As a mitigation Technique, we proposed solutions to segre-
gate IP addresses/subnets into Whitelist and Blacklists Traffic.
In this way, we were to restrict systems from receiving
potential malicious packets. This also mitigates the threat of
circulation of malicious packets which in turn are Trojan to
Exploits and hence can essentially lead to failure/crash of
Computer Network and systems under that LAN.

By all counts, and with proven results, we also developed a
script which gives us some basic information about incoming
traffic, DNS server, its routing, etc. in a Graph format.

ACKNOWLEDGMENT

The authors would like to thank the mentor, Prof. Siba
Swain (Assistant Professor, Computer Science and Engineer-
ing, IIT Dharwad) for giving us the opportunity to work under
him. The authors would also like to thank Jay Garchar (Com-
puter Science and Engineering Department, Senior Year, IIT
Dharwad) for his constant support and guidance over selection
of tools for implementations and helping us in bottlenecks
throughout the course of Research and Development.

REFERENCES

[1] Network Traffic Obfuscation and Automated Internet Censorship
https://arxiv.org/pdf/1605.04044.pdf

[2] Man in the Middle Attack
https://en.wikipedia.org/wiki/Man-in-the-middle attack

[3] Computer Network
https://en.wikipedia.org/wiki/Computer network

[4] Packet Injection
https://en.wikipedia.org/wiki/Packet injection

[5] Scapy
https://scapy.net

[6] Snort
https://www.snort.org

[7] Wireshark
https://www.wireshark.org

[8] Nmap
https://nmap.org

[9] Malicious Traffic Detection in Local Networks with Snort
https://infoscience.epfl.ch/record/141022/files/pdm.pdf

[10] OSI Model
https://en.wikipedia.org/wiki/OSI model

[11] Kioptrix
https://www.vulnhub.com/entry/kioptrix-level-1-1,22/

[12] Ubuntu OS Distribution
https://ubuntu.com

[13] Reputation Prepocessor
https://sublimerobots.com/2015/12/the-snort-reputation-preprocessor/

7

[14] Snort Detection
https://resources.infosecinstitute.com/topic/
snort-rules-workshop-part-one/

[15] Scapy Techniques & Detection
https://scapy.net/conf/scapy csw05.pdf

[16] PCAP Analysis & Graphs in Wireshark
https://www.wireshark.org/docs/wsug html chunked/ChStatIOGraphs.
html

[17] John Hammond, Working of Ghidra, https://www.youtube.com/watch?
v=aCWI61QX1OU

8

